\(\int \sqrt {a+b \sin ^2(e+f x)} \tan (e+f x) \, dx\) [490]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 58 \[ \int \sqrt {a+b \sin ^2(e+f x)} \tan (e+f x) \, dx=\frac {\sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b \sin ^2(e+f x)}}{\sqrt {a+b}}\right )}{f}-\frac {\sqrt {a+b \sin ^2(e+f x)}}{f} \]

[Out]

arctanh((a+b*sin(f*x+e)^2)^(1/2)/(a+b)^(1/2))*(a+b)^(1/2)/f-(a+b*sin(f*x+e)^2)^(1/2)/f

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 58, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3273, 52, 65, 214} \[ \int \sqrt {a+b \sin ^2(e+f x)} \tan (e+f x) \, dx=\frac {\sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b \sin ^2(e+f x)}}{\sqrt {a+b}}\right )}{f}-\frac {\sqrt {a+b \sin ^2(e+f x)}}{f} \]

[In]

Int[Sqrt[a + b*Sin[e + f*x]^2]*Tan[e + f*x],x]

[Out]

(Sqrt[a + b]*ArcTanh[Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[a + b]])/f - Sqrt[a + b*Sin[e + f*x]^2]/f

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3273

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x]^2, x]}, Dist[ff^((m + 1)/2)/(2*f), Subst[Int[x^((m - 1)/2)*((a + b*ff*x)^p/(1 - ff*x)^((m
 + 1)/2)), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {\sqrt {a+b x}}{1-x} \, dx,x,\sin ^2(e+f x)\right )}{2 f} \\ & = -\frac {\sqrt {a+b \sin ^2(e+f x)}}{f}+\frac {(a+b) \text {Subst}\left (\int \frac {1}{(1-x) \sqrt {a+b x}} \, dx,x,\sin ^2(e+f x)\right )}{2 f} \\ & = -\frac {\sqrt {a+b \sin ^2(e+f x)}}{f}+\frac {(a+b) \text {Subst}\left (\int \frac {1}{1+\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \sin ^2(e+f x)}\right )}{b f} \\ & = \frac {\sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b \sin ^2(e+f x)}}{\sqrt {a+b}}\right )}{f}-\frac {\sqrt {a+b \sin ^2(e+f x)}}{f} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 60, normalized size of antiderivative = 1.03 \[ \int \sqrt {a+b \sin ^2(e+f x)} \tan (e+f x) \, dx=\frac {\sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b-b \cos ^2(e+f x)}}{\sqrt {a+b}}\right )-\sqrt {a+b-b \cos ^2(e+f x)}}{f} \]

[In]

Integrate[Sqrt[a + b*Sin[e + f*x]^2]*Tan[e + f*x],x]

[Out]

(Sqrt[a + b]*ArcTanh[Sqrt[a + b - b*Cos[e + f*x]^2]/Sqrt[a + b]] - Sqrt[a + b - b*Cos[e + f*x]^2])/f

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(128\) vs. \(2(50)=100\).

Time = 1.20 (sec) , antiderivative size = 129, normalized size of antiderivative = 2.22

method result size
default \(\frac {\frac {\sqrt {a +b}\, \ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}-2 b \sin \left (f x +e \right )+2 a}{1+\sin \left (f x +e \right )}\right )}{2}+\frac {\sqrt {a +b}\, \ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}+2 b \sin \left (f x +e \right )+2 a}{\sin \left (f x +e \right )-1}\right )}{2}-\sqrt {a +b -b \left (\cos ^{2}\left (f x +e \right )\right )}}{f}\) \(129\)

[In]

int((a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e),x,method=_RETURNVERBOSE)

[Out]

(1/2*(a+b)^(1/2)*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))+1/2*(a+b)^(1/2)*
ln(2/(sin(f*x+e)-1)*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))-(a+b-b*cos(f*x+e)^2)^(1/2))/f

Fricas [A] (verification not implemented)

none

Time = 0.44 (sec) , antiderivative size = 145, normalized size of antiderivative = 2.50 \[ \int \sqrt {a+b \sin ^2(e+f x)} \tan (e+f x) \, dx=\left [\frac {\sqrt {a + b} \log \left (\frac {b \cos \left (f x + e\right )^{2} - 2 \, \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \sqrt {a + b} - 2 \, a - 2 \, b}{\cos \left (f x + e\right )^{2}}\right ) - 2 \, \sqrt {-b \cos \left (f x + e\right )^{2} + a + b}}{2 \, f}, -\frac {\sqrt {-a - b} \arctan \left (\frac {\sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \sqrt {-a - b}}{a + b}\right ) + \sqrt {-b \cos \left (f x + e\right )^{2} + a + b}}{f}\right ] \]

[In]

integrate((a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e),x, algorithm="fricas")

[Out]

[1/2*(sqrt(a + b)*log((b*cos(f*x + e)^2 - 2*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(a + b) - 2*a - 2*b)/cos(f*x +
 e)^2) - 2*sqrt(-b*cos(f*x + e)^2 + a + b))/f, -(sqrt(-a - b)*arctan(sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(-a -
 b)/(a + b)) + sqrt(-b*cos(f*x + e)^2 + a + b))/f]

Sympy [F]

\[ \int \sqrt {a+b \sin ^2(e+f x)} \tan (e+f x) \, dx=\int \sqrt {a + b \sin ^{2}{\left (e + f x \right )}} \tan {\left (e + f x \right )}\, dx \]

[In]

integrate((a+b*sin(f*x+e)**2)**(1/2)*tan(f*x+e),x)

[Out]

Integral(sqrt(a + b*sin(e + f*x)**2)*tan(e + f*x), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 122 vs. \(2 (50) = 100\).

Time = 0.31 (sec) , antiderivative size = 122, normalized size of antiderivative = 2.10 \[ \int \sqrt {a+b \sin ^2(e+f x)} \tan (e+f x) \, dx=-\frac {\sqrt {a + b} \operatorname {arsinh}\left (\frac {b \sin \left (f x + e\right )}{\sqrt {a b} {\left (\sin \left (f x + e\right ) + 1\right )}} - \frac {a}{\sqrt {a b} {\left (\sin \left (f x + e\right ) + 1\right )}}\right ) - \sqrt {a + b} \operatorname {arsinh}\left (-\frac {b \sin \left (f x + e\right )}{\sqrt {a b} {\left (\sin \left (f x + e\right ) - 1\right )}} - \frac {a}{\sqrt {a b} {\left (\sin \left (f x + e\right ) - 1\right )}}\right ) + 2 \, \sqrt {b \sin \left (f x + e\right )^{2} + a}}{2 \, f} \]

[In]

integrate((a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e),x, algorithm="maxima")

[Out]

-1/2*(sqrt(a + b)*arcsinh(b*sin(f*x + e)/(sqrt(a*b)*(sin(f*x + e) + 1)) - a/(sqrt(a*b)*(sin(f*x + e) + 1))) -
sqrt(a + b)*arcsinh(-b*sin(f*x + e)/(sqrt(a*b)*(sin(f*x + e) - 1)) - a/(sqrt(a*b)*(sin(f*x + e) - 1))) + 2*sqr
t(b*sin(f*x + e)^2 + a))/f

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 313 vs. \(2 (50) = 100\).

Time = 0.43 (sec) , antiderivative size = 313, normalized size of antiderivative = 5.40 \[ \int \sqrt {a+b \sin ^2(e+f x)} \tan (e+f x) \, dx=-\frac {2 \, {\left (\frac {{\left (a + b\right )} \arctan \left (-\frac {\sqrt {a} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 4 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a} - \sqrt {a}}{2 \, \sqrt {-a - b}}\right )}{\sqrt {-a - b}} - \frac {2 \, {\left ({\left (\sqrt {a} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 4 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a}\right )} b - \sqrt {a} b\right )}}{{\left (\sqrt {a} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 4 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a}\right )}^{2} + 2 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 4 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a}\right )} \sqrt {a} + a + 4 \, b}\right )}}{f} \]

[In]

integrate((a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e),x, algorithm="giac")

[Out]

-2*((a + b)*arctan(-1/2*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/
2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a) - sqrt(a))/sqrt(-a - b))/sqrt(-a - b) - 2*((sqrt(a)*tan(1/2*f*x + 1/2
*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))*b - sqrt
(a)*b)/((sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*f*x + 1/2*e)^2 + 4*b*tan
(1/2*f*x + 1/2*e)^2 + a))^2 + 2*(sqrt(a)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 2*a*tan(1/2*
f*x + 1/2*e)^2 + 4*b*tan(1/2*f*x + 1/2*e)^2 + a))*sqrt(a) + a + 4*b))/f

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+b \sin ^2(e+f x)} \tan (e+f x) \, dx=\int \mathrm {tan}\left (e+f\,x\right )\,\sqrt {b\,{\sin \left (e+f\,x\right )}^2+a} \,d x \]

[In]

int(tan(e + f*x)*(a + b*sin(e + f*x)^2)^(1/2),x)

[Out]

int(tan(e + f*x)*(a + b*sin(e + f*x)^2)^(1/2), x)